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Abstract. Segmentation of cell nuclei is essential for analyzing high-
content histological screens. Often, parameters of automatic approaches
need to be optimized, which is tedious and difficult to perform manu-
ally. We propose a novel hyperparameter optimization framework, which
formulates optimization as a combination of candidate sampling and an
optimization strategy. We present a clustering based and a deep neural
network based pipeline for nuclei segmentation, for which the parameters
are optimized using state of the art optimizers as well as a novel opti-
mizer. The pipelines were applied to challenging prostate cancer tissue
images. We performed a quantitative evaluation using 28,388 parameter
settings. It turned out that the deep neural network outperforms the
clustering based pipeline, while the results for different optimizers vary
slightly.

1 Introduction

The segmentation of cell nuclei in histological prostate tissue images is a crucial
task to stratify prostate cancer. In particular, the properties of the microscopy
data with regard to contrast, noise, cell clustering, edge information, shape varia-
tion, and intensity variation determine the complexity of the required segmenta-
tion pipeline. Generally, a complex pipeline is necessary for robustly segmenting
heterogeneous data (Fig. 1), while the segmentation result highly depends on the
used parameters. Since manual parameter optimization of complex algorithms
is very time-consuming and difficult, automated parameter optimization is re-
quired. However, for complex pipelines the objective function is usually not fully
differentiable, which prevents using first or higher order optimization methods.
Instead, zero order optimization (black-box optimization) [1] can be performed
without using further information of the objective function. Black-box optimiza-
tion uses a limited number of evaluations of the objective function, and the
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non-convex optimization tries to determine the (local) optimum by finding the
best parameters. For machine learning systems, black-box optimization can be
used for automatically tuning hyperparameters as done for denoising algorithms
[2], for simulated objective functions [3] or for cell segmentation in tissue images
[4]. However, to our knowledge, a systematic evaluation on the applicability of
automated black-box optimization has not been conducted for hyperparameter
optimization of cell nuclei segmentation pipelines. Existing optimization frame-
works like Spearmint [5], Hyperopt [6], Scikit-Optimize [7], or Google Vizier [8]
do not satisfy the demands of cell nuclei segmentation as they have a low ease of
use (e.g., mix of programming languages, workspace management), employ only
few optimizers or only offer limited expandability. Furthermore, Google Vizier
is not publicly available.

In this work, we introduce a novel black-box optimization framework, where
hyperparameter optimization is formulated as a combination of candidate sam-
pling and an optimization strategy. Our framework allows a modular design of
new optimizers as well as quickly implementing state of the art optimizers. We
applied our framework to a clustering based pipeline as well as a deep neural
network based pipeline to segment cell nuclei in challenging prostate cell tissue
images. We evaluated the pipelines using different optimizers and 28388 pa-
rameter settings. We provide insights into cell nuclei segmentation and suggest
common practices for hyperparameter optimization in this application.

2 Methods

We investigated two nuclei segmentation pipelines, one based on K-means clus-
tering and the other based on a U-Net convolutional neural network (CNN).
The hyperparameters of the pipelines were optimized using our novel distributed
black-box optimization framework.

2.1 Segmentation pipelines

Clustering based segmentation The pipeline involves several parameters (in
the following highlighted in italic). An image is smoothed by a Gaussian filter
(sigma) before performing K-means clustering using intensity values (cluster ini-
tialization method). Cluster initialization with a random seed value leads to a

Fig. 1. Examples of prostate tissue images with various challenges for image anal-
ysis.(a) Strong background noise, (b) Low contrast, (c¢) Strong shape variation, (d)
Strong intensity variation.



Hyperparameter Optimization for Nuclei Segmentation 347

non-deterministic pipeline. To avoid this, we set the seed value to a fix value.
Median filter and morphological closing of small holes are applied subsequently.
By comparing a selected geometric feature of each cluster to the mean of all
clusters, one cluster is assigned as foreground, whose labels are subsequently
thresholded with regard to the geometric features area (upper and lower thresh-
old) and solidity before using the foreground cluster as segmentation result.

CNN based segmentation We train a U-Net [9] on the respective training and
validation datasets using the Adam optimizer and early stopping. For training
we perform offline data augmentation using rotation, flipping, and elastic defor-
mation. The local minimum found by Adam highly depends on the initialization
of the network. Therefore, for a fair comparison we use the same seed value for
sampling the initial network weights in all experiments. Small segmented objects
are discarded using a threshold for the area. The parameters of this pipeline are
the learning rate, batch size, and area threshold.

2.2 HyperHyper optimization framework

Our proposed distributed black-box optimization framework HyperHyper subdi-
vides hyperparameter optimization in a hyperparameter candidate sampler and
an optimization strategy. Candidate sampler and optimization strategy can be
selected from a model zoo to form an optimizer for a specific application. Se-
quential model-based optimization (SMBO) is performed by sampling candidates
and evaluating or dismissing them (Fig. 2). The candidate sampler employs a
specified hyperparameter space definition as prior, which allows using numerical
and categorical parameters with various distributions (e.g., discrete/continuous
uniform, Gaussian, log Gaussian, exponential). The sampled hyperparameters
are applied to the segmentation pipeline by a worker (compute node) and a per-
formance score with respect to manually annotated ground truth is calculated.
In our experiments, we use the Dice coefficient as performance measure. For
each hyperparameter evaluation, a dedicated workspace is created and managed
by the framework. The optimization can be performed by highly distributed
computation. A database is used for distributing compute jobs including the hy-
perparameters as well as the compute pipeline, and collecting respective results.
For each available compute cluster, a coordinator node manages the instantiation

Hyperparameter
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Fig. 2. Schematic representation of the black-box optimization framework.
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of workers within the respective cluster. Since the used pipelines contain non-
ordinal parameters, we decided to choose optimizers which can handle variables
without a natural order. Besides random search (Random) we used sequential
model-based algorithm configuration (SMAC) [10], which combines a random
forest regression model and sampling from the prior, and represents a more so-
phisticated version of the general sequential model-based optimization (SMBO)
framework [10]. We also modified SMAC by using the XGBoost [11] regression
model (SMAC-XGBoost) instead of random forest (SMAC-RF), since XGBoost
is currently one of the most popular decision tree based models. Alternatively,
we use an evolutionary optimizer with a covariance matrix adaptation evolution
strategy (CMA-ES), which is a generic population-based meta-heuristic based
optimizer, where feature sets are assumed as “genomes”, which undergo evo-
lutionary processes like selection, recombination or mutation [12]. We further
investigated the tree of parzen estimator (TPE) surrogate, which performs a
nonparametric density approximation of a random variable [13].

3 Experimental results

We applied our hyperparameter optimization framework using multiple optimiz-
ers to two pipelines for cell segmentation in challenging prostate cancer tissue
images (Fig. 1). The tissue microarray (TMA) images of varying sizes were di-
vided into 256 x 256 pixel image patches before randomly splitting the dataset
into 75% for training and 25 % for testing. We used 60 ground truth images
which were manually annotated by an expert. The clustering based pipeline
includes six parameters, whereas the CNN based pipeline involves three pa-
rameters. As global optimum we used the result from extensive Grid Search.
For each optimizer, 200 evaluations were performed on 20 compute nodes (clus-
tering: 27280, CNN: 1108 parameter settings). The pipelines are deterministic,
since we used a fix seed value. However, the hyperparameter optimization itself
is stochastic. Therefore, we performed 10 runs per optimizer and report mean
and standard deviation of the results for the clustering based pipeline (Tab. 1).
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Fig. 3. Comparison of the loss for different optimizers as a function of the number of
training iterations. The clustering pipeline is averaged over ten runs (standard deviation
highlighted).
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Table 1. Results for different optimizers. Shown is the improvement A Dice after the
warm-up phase and the absolute Dice value. Best results are highlighted in bold.

Pipeline Optimizer A Dice (Improvement) Dice
Random 0.030 0.606 + 0.025
TPE 0.045 0.609 £ 0.020

Clustering CMA-ES 0.077 0.642 + 0.021
SMAC-RF 0.094 0.642 + 0.026
SMAC-XGBoost 0.064 0.634 £+ 0.021
Grid Search - 0.654
Random 0.019 0.847
TPE 0.038 0.850

CNN CMA-ES 0.033 0.852
SMAC-RF 0.017 0.846
SMAC-XGBoost 0.039 0.847
Grid Search - 0.864

Due to computational resources needed for training deep neural networks, we ran
the CNN based pipeline once per optimizer. In addition to Dice, we report the
difference (A Dice) to the Dice value after the warm-up phase. The framework
performs a warm-up phase for exploring the parameter space by evaluating 20
random samples before performing optimization. Thus, A Dice reflects the im-
provement achieved by the optimizer. For the clustering based pipeline, it turns
out that SMAC-RF performs best regarding A Dice (Fig. 3), whereas for the
CNN pipeline our proposed SMAC-XGBoost achieves the best value for A Dice
(Fig. 4). Considering the absolute Dice value, CMA-ES and SMAC-RF perform
best, deviating only 0.012 from the global minimum, whereas TPE yields the
lowest standard deviation. SMAC-XGBoost achieves a slightly lower Dice value
than the best performing SMAC-RF. However, SMAC-XGBoost outperforms
SMAC-RF at the beginning of the training. For the CNN based pipeline, the
CMA-ES achieves the best absolute Dice value. Overall, the CNN based pipeline
significantly outperforms the clustering based pipeline.

(a) Ground truth (b) Clustering (c) Clustering (d) CNN

Fig.4. Example image with ground truth (blue) and segmentation using SMAC-
RF (red) and SMAC-XGBoost (green).
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4 Conclusion

We presented a novel framework for hyperparameter optimization of nuclei seg-
mentation pipelines. The framework allows implementing common optimizers as
well as designing novel optimizers. From our study using two pipelines for seg-
menting cell nuclei in prostate tissue images, it turned out that CMA-ES and
SMAC derivatives perform best.
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